Sedimentation upon Different Carrier Liquid in Giant Electrorheological Fluid and Its Application

نویسندگان

  • Yaying Hong
  • Weijia Wen
چکیده

*Correspondence: Weijia Wen, Department of Physics and Institute of Nano Science and Technology, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China e-mail: [email protected] When giant electrorheological (GER) fluid is settled after some time, particles can precipitate out of the oil in a multistep process that involves the formation of larger particles, the aggregation of colloids, and eventual sedimentation. Colloidal stability in GER fluid can influence the GER performance and the fluid flow steadiness. We investigated the sedimentation effect of the GER particles suspended in various carrier liquid. Different from the existing electrorheological (ER) fluids, GER particles consisting of oxalate core with urea coating are found oil synergistic.The sedimentation effect of the particles suspended in oils from the family of synthetic oil and mineral oil were checked by direct observation. The rheological behavior of the GER fluid upon electric field application was also investigated. These experiments showed that stable colloidal suspension and good GER effect can be achieved coherently by favorable particle–oil interaction. The resultant high yield stress and low sedimentation rate achieved due to the instrumental linking of hydrogen bond is showed in the hydrogenated silicone oil carrier liquid. With the anti-sedimentation characteristic upon the new carrier oil, hydrogenated silicone oil-GER fluid, we investigated their GER effect in a modified mono tube damper and the experimental result showed wide controllability range. Our investigations may broaden engineering applications.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of mechanical abrasion in polar-molecular electrorheological fluids

Mechanical abrasion is a phenomenon which commonly occurs during the application of polarmolecular electrorheological (PMER) fluids. We experimentally investigate its effect by milling PMER particles for different times. We find that this effect can significantly reduce electrorheological effects of PMER fluids made of butyrolactone-modified TiO2 particles. This reduction results from the reduc...

متن کامل

Giant electrorheological effect: a microscopic mechanism.

Electrorheological fluids constitute a type of colloids that can vary their rheological characteristics upon the application of an electric field. The recently discovered giant electrorheological (GER) effect breaks the upper bound of the traditional ER effect, but a microscopic explanation is still lacking. By using molecular dynamics to simulate the urea-silicone oil mixture trapped in a nano...

متن کامل

Homogeneous Electrorheological Fluids Applied to Vibration Control

The purpose Electrorheological (ER) fluids are capable of providing continuously variable damping forces in response to an electrical stimulus. Many prototype ER dampers, described in the literature, have been based upon exploiting the variable shear properties of ER fluids. Recently, an alternative mode of operation, namely squeeze-flow, has been identified and investigated. Furthermore, most ...

متن کامل

Free vibrations analysis of a sandwich rectangular plate with electrorheological fluid core

In this paper, a rectangular sandwich plate with a constrained layer and an electrorheological (ER) fluid core is investigated. The rectangular plate is covered an ER fluid core and a constraining layer to improve the stability of the system. The two outer layers of the sandwich structure are elastic. The viscoelastic materials express the middle layer behavior under electric field and small st...

متن کامل

Unidirectional compression of electrorheological fluids in electric fields

A series of unidirectional compression tests on electrorheological fluids has been carried out with different plate sizes, initial plate separations, and applied voltages. Experimental results of compression pressure were compared with the continuum non-Newtonian squeeze-flow theory in a normalized form. It was found that the compression resistance of the electrorheological fluid in an electric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014